Structure Elucidation of MM 17880, a New Fused β-Lactam Antibiotic isolated from *Streptomyces olivaceus*; a Mild β-Lactam Degradation Reaction

By DAVID F. CORBETT, A. JOHN EGLINGTON, and T. TREFOR HOWARTH* (Beecham Pharmaceuticals Research Division, Brockham Park, Betchworth, Surrey RH3 7AJ)

Summary The structure of the olivanic acid derivative (1) has been confirmed by a novel β -lactam degradation in dimethyl sulphoxide; application of this reaction has resulted in the structure elucidation of a new antibiotic, MM 17880.

In an earlier communication¹ we described the spectroscopic data to support structures (1) and (2) for two new, β -lactam antibiotics isolated from *Streptomyces olivaceus*. We now report a novel transformation which confirms structure (1) and which enabled us to elucidate the structure (12) of a closely related, co-occurring metabolite, MM 17880.²

Alkylation of the disodium salt of (1) with methyl iodide in dimethylformamide gave the monomethyl ester (3; 65%).[†] When (3) was heated in dimethyl sulphoxide (70 °C, 2 h) an essentially quantitative transformation occurred[‡] to give a product which, on the basis of ¹³C (Table) and ¹H n.m.r. spectra, was assigned structure (4). Confirmation of this structure was obtained by successive treatment with diazomethane and 1,5-diazabicyclo[5.4.0]undec-5-ene (DBU) to yield the less-polar pyrrole (5) [25% from (3)],[†] M^+ 338.0934 (C₁₅H₁₈N₂O₅S).§ The mass spectral fragmentation pattern was particularly informative and gave, *inter alia*, ions at m/e 255 and 84, formally corresponding to (7) and (9).

TABLE. ¹³C N.m.r. spectra of (3) and (4).^a

(3)		(4)	
Chemical		Chemical	
Shiit	Assignment	shift	Assignment
176 (s)	C=O	171 (s)	C=O
167 (s)	C=O	167 (s)	C=O
161 (s)	C=O	160 (s)	C=O
152 (s)	>C=	133 (s)	Pyrrole-C
133 (d)	=CH.NH-	130 (d)	=ČH.NH-
121 (s)	>C=	126 (s)	Pyrrole-C
97 (d)	=CH.S-	115 (s)	Pyrrole-C
68 (d)	-CHOSO3-	108 (d)	Pyrrole-CH
58 (d)	5(6)-CH	101 (d)	=CH.S-
53 (d)	6(5)-CH	72 (d)	-CHOSO3-
52 (q)	-OCH ₃	50·8 (q)	OMe
37 (t)	4- CH ₂	50·5 (d)	$-CH(CO_2H)$
23 (q)	-CO.Me	23 (q)	-CO.Me
20 (q)	O-CH.Me	19 (q)	OCH-Me

^a In (CD₃)₂SO, rel. to dioxan internal standard.

The utility of the above reaction was demonstrated by the structure elucidation of a new antibiotic, MM 17880, which was also isolated from *Streptomyces olivaceus* as the disodium salt; ν_{max} 1750 (β -lactam CO), 1590—1650 (amide CO, CO₂⁻), and 1220—1270 cm⁻¹ (OSO₃⁻); λ_{max} (H₂O) 298 nm (ϵ 8410). The ¹H n.m.r. spectrum (D₂O) revealed two methyl groups similar to those in both (1) and (2), but the *trans*-disubstituted double bond was absent. The region $\delta 2.8 - 3.75$ was complex but appeared to contain four protons in excess of those observed in the spectra of (1) and (2). These data, together with the absence of a short wavelength absorption in the u.v. spectrum, suggested that MM 17880 was the dihydro-derivative of either (1) or (2).

Alkylation of the disodium salt of MM 17880 with pbromobenzyl bromide gave the mono-ester (13)[†] which, after (a) heating in dimethyl sulphoxide (70 °C, 2 h), (b) esterification with diazomethane, and (c) treatment with DBU, gave the pyrrole (6), [†] M^+ 494·0515 ($C_{21}H_{23}BrN_2O_5S$).§ The mass spectrum of (6) contained ions formally corresponding to (8), (10), and (11), and on the basis of this evidence, MM 17880 was assigned structure (12). The *cis* arrangement of the protons on the β -lactam ring was inferred from the appearance (dd, J 9·5 and 6·0 Hz) of the C-6 proton. Both coupling constants are incompatible with a *trans*-substituted β -lactam, whereas the 6·0 Hz coupling was similar to that observed in the n.m.r. spectra of (1) and (2).

MM 17880, like (1) and (2), inhibits a wide range of β -lactamases and also possesses potent antibacterial properties.

(Received, 3rd October 1977; Com. 1029.)

[†] Spectral properties were in accord with the structure.

 \ddagger When the reaction was monitored by both ¹H and ¹³C n.m.r. spectroscopy, formation of (4) alone was observed as a single stereoisomer.

§ This product was obtained as an inseparable mixture of E- and Z-isomers.

¹ A. G. Brown, D. F. Corbett, A. J. Eglington, and T. T. Howarth, J.C.S. Chem. Comm., 1977, 523.

² S. Box and J. D. Hood, Belgian P. 839-324.